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SUMMARY 
The problem of the propagation of sound waves radiated by a source in a fluid moving with subsonic velocity between 
two parallel walls or inside a cylindrical tube is considered in [2]. The most interesting thing of this problem is that 
waves may occur with constant amplitude coming from infinity. This article gives the calculation of the energy 
transport in the wave guides. 

It is shown that it is not possible to gain energy from infinity. 

I. Introduction 

Reference [ 1] gives the investigation of  an acoustical problem in a subsonic flow. In the solution 

of  tha t  problem incoming waves with constant  ampli tude occurred. The radiat ion condit ion of  

Sommerfeld says that, if the medium at infinity is homogeneous ,  no incoming waves can occur. 

This implies that  the radiat ion condi t ion of Sommerfeld is not  applicable in the problem treated 

in [1] because the medium at infinity is not  homogeneous .  The incoming w~ves were a motive 

for Hoogs t ra ten  and Kaper  to investigate two problems which have especially to do with these 

waves. In  [-2] they consider first the two-dimensional  problem of a line source which is located in 

a subsonic flow between two parallel plates, and then they investigate the problem of a point  

source in a subsonic flow inside a circular cylindrical tube. The present article gives addit ional 

calculations about  the energy transport .  There is an energy t ranspor t  by the various waves but  

there is also a t ranspor t  of  internal and kinetical energy by the main flow. It is shown that  it is not  

possible to gain energy from infinity. This means that, if the Sommerfeld radiat ion condit ion is 

formulated as the requirement that  an inflow of energy from infinity cannot  occur, this 
condit ion is applicable in the problems treated here. 

2. The formulae for the velocity potential 

We shalluse the same nota t ion as in [2]. In  the first problem two parallel walls coincide with the 

planes 35 = _+ d of  a three-dimensional s ~, ~ space. Between the walls a non-viscous fluid moves 

with constant  velocity U in the direction of  the positive ~-axis. The fluid velocity is subsonic, 
hence U/c = M < 1, where cis the sound velocity. An harmonical ly  fluctuatingline source with 
frequency ~ is situated along the ~-axis. In the second problem we have a tube with radius d and 
axis coinciding with the)~-axis. Here we have a point  source in the origin. In  both  problems the 

source is switched on at time ~- = 0. We are interested in the solution for f ~ oo. As is ment ioned 
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in [-2] the steady state problem, that is, the limit problem for ~- ~ o% has not a unique solution. 
To obtain a unique solution one can introduce a bulk viscosity and then one can consider the 
limit when this viscosity tends to zero. This is done in [1] and [2]. A second possibility is to 
consider the completeinitial value problem and to obtain from this the solution for ~ ~ oo. This 
is also done in [2] and it is shown that both methods give the same results. 

We shall not give again the derivations of the formulae. We want only to remark that the 
expressions in [2] become less complicated if one starts with an expansion in a Fourier series in 
the problem with the flat walls, and with a Dini series in the problem with the cylindrical tube. 
Hence for the dimensionless velocity potential in the first problem we put 

co 

9'(x, y, t) = ~Vo(x, t) + Z V.(x, t) cos ,my, (1) 
n = l  

and for the second problem 

GO 

7~(x, r, t) = Z W.(x, t)Jo(2.r ). 
n = 0  

(2) 

Here we have used dimensionless quantities 

x = 2d -1, y = yd -1, r = fd -1, t = cof, ~rt= }~r 

where 7tis the velocity potential and fis the radial coordinate. The numbers 2. are the zeros of 
the first-order Besselfunction, hence J1 (2.) = 0 with 2 o = 0, 4.+ 1 > 4.. 

The boundary condition of zero normal velocity at the walls of the wave guides is satisfied by 
each term of the series. The coefficients 11. and IV. can be found along the same way as is done in 
[2] for the potential 7 t. 

For  the initial value problem we obtain 

, j{  
Vn(X , t )  = ~ co /~222 + 2kM2 + n2n 2 - -  k 2 

e it 

e - iax e - iXx ) 
e is+(~)t e is-(~)t~ d2, (3) 

+ 2 k ( s + ( 2 )  - 1 ) , j 2  2 + n2~  2 2 k ( s - ( 2 )  - 1 ) , j 2  2 + n 2 ~  

where k = cod~c, fl = x/1 - M 2 and s-+(2)= M2k -1 +_ k - l x / 2 2  + n2n 2. 
The solution (3) is unique because it can be shown that the integrand of(3) has no singularities 

on the real axis. A consequence of our series expansion (1) is that this can be pro ved easier than in 
[2]. A product expansion of the sine function is not necessary now. 

For  t ~ oo and n > 0 we get 

-elt fL e -i~x 1 / k 
V.(x, t) - 2n /~222 + 2 k m 2  + nZ/r 2 - k 2 d2 + ~-n 2nil 

x ~ e~'~[�88 4 e-~=[~+("~/#)~+("#/k)t]} l ~ 1 + 0  ( 1 ) ) ,  (4) 
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and for n = 0, 

e it ~ e-iZx i 

Vo(x, t) - 2re JL fl222 + 2 k M 2  - k 2 d2 - 2k-" (5) 

The path of integration L is the real axis, but for n < N, where N is the largest integer less than 
k/(flzO, this path has a small semi-circle below the point 4 + and a small semi-circle above the 
point ~.-, where 

~+ = - f l - 2 ( k M  +_ x / k  2 - f12n2~2), n _-< N. 

For  n > k/(fln) > N we define 

~+ = f l -  Z ( - k M  + iN/fl2n2n 2 -- k2), n > N .  

The second term in (5) is not found when one uses the method of vanishing bulk viscosity. 
However this constant term has no practical meaning. It is possible to calculate the integrals in 
(4) and (5) by the method of residues. 

If we neglect the second-order terms in (4) and (5) we obtain 

i e - iG•  
V,(x, t) = e it, for n __< N, 

2,jk 2 - / ~ 2 n ~  

e- iG+x 
e", for n > N ,  

2~/f12n2n 2 - k2 

where we have to take ~- for x > 0 and ~,+ for x < 0. If there are numbers ~-  < 0 then there are 
downstream incoming waves with constant amplitude. This occurs if there exist integers n with 
k/zc < n < k/(flrt). The formulae for W, in the tube problem can be found from the expressions 
for V, by replacing everywhere n by 2,/zt and multiplying V, by 2/Jo2(2,). 

3. The energy transport 

We consider only the steady state solution. There is an energy transport by the waves. Especial- 
ly the incoming waves may rise the question whether it is possible to gain downstream energy 

from infinity. However, we have to realise that internal and kinetical energy drifts downstream 
with the main flow. We shall show that it cannot occur, neither downstream nor upstream, that 
one gains energy from infinity. 

First we consider the problem with the two parallel plates. We denote by E T the total energy 
that flows in the positive x-direction at (say) x = x o over a unit of length in the z-direction 
between the plates in a period of time 21r. Then E r = E 1 + E2, where E 1 is the energy flow 
caused by the interaction of the fluid particles in the waves and E 2 is the flow of internal and 
kinetical energy. One can calculate E 1 by the principle that the increase of energy in a volume is 
equal to the work done by the external forces. Let P~ be the pressure at infinity and p the 
pressure disturbance caused by the source. The velocity of the main flow expressed in 
dimensional coordinates is M / k .  The velocity disturbances in the x-direction are given by 
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0 7t/SX. Then we get 

Ea = -  (P~o + P) M / k +  dydt  
=o =-1 cx  / 

= - p • M / k  + p• ~-x + p M / k  + p It .  
=0  = - 1  

Due to the periodic time dependence of 7Sand p, the contribution of the second and third term in 

the integrand vanishes after integration over t. The first term does not depend on t and x and 
gives the energy flow of the undisturbed medium. We shall not consider this term. The pressurep 

can be found from the equation of motion. In a coordinate system x,,, y, t,, moving with the 
main flow we have grad p = pdq/dt, where p is the density and q the velocity vector. Up to first 
order accuracy we have dq/dt = Cqfi?t. Then we find from the xm-component of the equation of 

motion that p = p(8~/&m). The connection between the fixed and the moving coordinate 
system is 

x = x m + M k - 1  tm' t = tra. 

This gives 

87  t 

P = P  + k  ~x 

and hence 

2x 1 O ~  / C 7  s M 

dydt. 
=0 y = - - I  

For  the calculation ofE 2 we have to know the acoustical energy E, that is, the sum of the internal 
and kinetical energy per unit of volume. An expression for E can be found in [3], formula (4.63), 

page 183. Expressed in our dimensionless quantities, this becomes 

=2- \~t=) +\~x=/ +\~y) +\~z/J 
As the velocity of the undisturbed flow is M/k ,  we obtain 

E 2 - 

For  the calculation of the energy flow one has to take the real part  of the velocity potential 
because the energy is not a linear expression. Further one has much profit of the series 
expansion (1) because the functions cos n~y are orthogonal, and consequently all cross 
products vanish after integration over y. This means that there is no energy flow due to 

interaction of the waves. 
The results of the calculations are as follows: for all waves with exponential decay as [x[ ~ 0% 

that is, for waves with n > N, one obtains 

E r = E 1 + E 2 = 0. 
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This could be expected because otherwise one cannot see how the process can have only a 

periodic time dependence. This is a check for the correctness of the formulae. For 0 < n < N 

and x > 0 one obtains 

p ~ ( k M  - ~ / k  2 - f lZn2~2)(k  - M x / k  z - f12n2~2) 

E 1 = - 4k f l4(kZ - flZnZ~zZ ) , 

p ~ M ( k  - M ~ / k  z - f12n27c2)2 

E 2 = 4k f l4 (k  2 - f12n27c2 ) 

E r = E 1 + E 2 - -  

p ~ ( k  - M x / k  2 - f12n2~2) 

4 k f l 2 x / k  2 - f12n2~2 

The factor k - M ~ / k  2 - -  fi2n2n2 is always positive for M < 1. The factor 

k M  - x / k  2 - f12n27z2 is positive for k/rc < n < k/( f ln) .  Hence the energy flow for the incoming 

waves is negative but E T is positive for all waves. For  n = 0 and x > 0 one obtains 

pg(1 - M )  2 p ~ M ( 1  - M) 2 p~z(1 - M) 

E 1 --  8kf14 ' E2 = 8kf14 ' E T - 8kf12 

All these quantities are positive because here we have always to do with an outgoing wave. 
For  0 < n < N and x < 0 the results are 

p ~ ( k M  + x / k  2 - flZn27c2)(k + M ~ / k  2 - f12n2~2) 

E 1 = - 4kf14(k2 - -  f12n27~2 ) 

p ~ M ( k  + M x / k  2 - flZn2~2)2 
E 2 = 4k f l4(k  2 - fl2n2Tc2 ) ' 

E T  ~ - -  

p ~ ( k  + M x / k  2 - f12n2~z2) 

4 k f l 2 ~ / k  2 - f lZn2~2 

and for n = 0 and x < 0, 

pg(1 + M )  z p~zM(1 + M) 2 p~(1 + M) 

E 1 --  8kf14 " E 2 -  8kf14. , E T -  8kf12 

Hence for x < 0 we have E a < 0, which is in agreement with the fact that there exist only 
outgoing waves for x < 0. The energy flow E 2 is again positive but E z is always negative. The 
conclusion is that we have upstream and downstream for all waves an energy transport  in a 
direction away from the source. 

The formulae for the problem with a circular cylindrical tube can be derived in the same way. 
The expressions for the energy flow in this case can be found by replacing everywhere in the 
formulae of the first problem n by 2,/~ and multiplying the righthand sides by 2/J~()~,). The 
expressions for n = 0 follow in this case from the general formulae. Of course the conclusions for 
the energy flow are the same as above. This means that it is not possible to gain energy from 
infinity. 
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No te :  Deta i l s  of  the ca lcula t ions  can be found in [4]. In  [4]  it  is also shown tha t  when an integer 

n exists with k = mzfl, resp. k = 2,fl, then a s teady state so lu t ion  does  no t  exist, bu t  the velocity 

po ten t ia l  increases p r o p o r t i o n a l l y  with x / t  for t ~ oe. 
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