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SUMMARY
The problem of the propagation of sound waves radiated by a source in a fluid moving with subsonic velocity between
two parallel walls or inside a cylindrical tube is considered in [2]. The most interesting thing of this problem is that
waves may occur with constant amplitude coming from infinity. This article gives the calculation of the energy
transport in the wave guides.

It is shown that it is not possible to gain energy from infinity.

1. Introduction

Reference[1] givestheinvestigation of an acoustical problemin asubsonic flow. In thesolution
ofthat problem incoming waves with constant amplitude occurred. The radiation condition of
Sommerfeld says that, if the medium at infinity is homogeneous, no incoming waves can occur.
Thisimplies that theradiation condition of Sommerfeld isnot applicablein the problem treated
in [1] because the medium at infinity is not homogeneous. The incoming wzves were a motive
for Hoogstraten and Kaper to investigate two problems which have especially to do with these
waves.In[2] they consider first the two-dimensional problem of aline source whichislocatedin
a subsonic flow between two parallel plates, and then they investigate the problem of a point
source in a subsonic flow inside a circular cylindrical tube. The present article gives additional
calculations about the energy transport. There is an energy transport by the various waves but
thereisalsoatransportofinternal and kinetical energy by the main flow. Itisshown that itisnot
possible to gain energy from infinity. This means that, if the Sommerfeld radiation condition is
formulated as the requirement that an inflow of energy from infinity cannot occur, this
condition is applicable in the problems treated here.

2. The formulae for the velocity potential

Weshallusethe samenotationasin [2]. In the first problem two parallel walls coincide with the
planes y = +d of athree-dimensional X, y, Z space. Between the walls a non-viscous fluid moves
with constant velocity U in the direction of the positive x-axis. The fluid velocity is subsonic,
hence U/c = M < 1,wherecisthesound velocity. An harmonically fluctuating line source with
frequency wissituated along the z-axis. In the second problem we have a tube with radius d and
axis coinciding with the x-axis. Here we have a point source in the origin. In both problems the
sourceis switched on at time f = 0. We areinterested in the solution for f — oo. Asis mentioned
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in [2] the steady state problem, that is, the limit problem for f — oo, has not a unique solution.
To obtain a unique solution one can introduce a bulk viscosity and then one can consider the
limit when this viscosity tends to zero. This is done in [1] and [2]. A second possibility is to
consider the complete initial value problem and to obtain from this the solution for f — o0. This
is also done in [2] and it is shown that both methods give the same results.

We shall not give again the derivations of the formulae. We want only to remark that the
expressionsin [ 2] becomeless complicated if one starts with an expansion in a Fourier seriesin
the problem with the flat walls, and with a Dini series in the problem with the cylindrical tube.
Hence for the dimensionless velocity potential in the first problem we put

@

Yix, y, 1) =3V,(x, 1) + X V.(x, 1) cos nmy, (1)

n=1

and for the second problem
H(x,r, 1) = Z W (x, 1) o(4,7)- )

Here we have used dimensionless quantities

x=3xd" 1,

y=yd ', r=id !, t=0f ¥=%Po 'd?
where Pis the velocity potential and 7is the radial coordinate. The numbers 4, arethe zeros of
the first-order Besselfunction, hence J, (4,) = Owith A, =0,4,,, > 4.

The boundary condition of zero normal velocity at the walls of the wave guides is satisfied by
each term of the series. The coefficients V, and W, can be found along the same way asis donein
[2] for the potential ¥.

For the initial value problem we obtain

1 e _e—llx .
Vix, ) =— *
)= J_m {/3212 kM + i — k2 ©

e—ﬂ.x e—ﬂ.x
eLs‘*‘(l)t _ eis‘(/i)t} d/l, (3)
2k(s+(,1 1) /22 + n’n? 2U(s™(A) — 1) /42 + n?n?

where k = wd/c, f = /1 — M? and s*(4) = Mak™! + k™1, /4% + n’z?,

Thesolution (3)isunique becauseit can be shown that the integrand of (3) hasno singularities
onthereal axis. A consequence of our series expansion(1)is that thiscan be proved easier thanin
[2]. A product expansion of the sine function is not necessary now.

Fort — co and n > 0 we get

—zlx 1 k
V(x, 1) = i+ —
A% 1) J [P + 2kMJ. + nPn? — K2 2\ 2nf
ein[%+(nM/ﬂ)x+(nﬂ/k)t] e—in[%+(nM/B)x+(nﬂ/k)t] 1 1
>< . T EleR) e
nf —k nwf + k \/t
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andforn =0,

V N eit e—ilx di i (5)
== | BRI =R 2%

The path of integration L is the real axis, but for n £ N, where N is the largest integer less than
k/(Br), this path has a small semi-circle below the point &, and a small semi-circle above the
point &, , where

&= =M £ /K - Br’n®),  n<N.
For n > k/(fin) > N we define

& = Y —kM + i /fnin? — k2), n>N.

=+

The second term in (5) is not found when one uses the method of vanishing bulk viscosity.
However this constant term has no practical meaning. Itis possible to calculate the integrals in
(4) and (5) by the method of residues.

If we neglect the second-order terms in (4) and (5) we obtain

je in*®
V,,(x, t) = e", for n é N,
: 2 k?. _ ﬁ2n2n2
e*ié,,ix

- it
_2\/me,f0r n>N,

where wehavetotake &, forx > Oand & for x < 0.Iftherearenumbersé, < Othenthereare
downstream incoming waves with constant amplitude. This occursif there exist integers n with
k/m < n < k/(fn). The formulae for W, in the tube problem can be found from the expressions
for V, by replacing everywhere n by 4,/n and multiplying V, by 2/J3(,).

3. The energy transport

We consider only the steady state solution. Thereis an energy transport by the waves. Especial-
ly the incoming waves may rise the question whether it is possible to gain downstream energy
from infinity. However, we have to realise that internal and kinetical energy drifts downstream
with themain flow. We shall show thatit cannot occur, neither downstream nor upstream, that
one gains energy from infinity.

First we consider the problem with the two parallel plates. We denote by E, the total energy
that flows in the positive x-direction at (say) x = x,, over a unit of length in the z-direction
between the plates in a period of time 2z, Then E; = E; + E,, where E| is the energy flow
caused by the interaction of the fluid particles in the waves and E, is the flow of internal and
kinetical energy. One can calculate E, by the principle that the increase of energyin a volume is
equal to the work done by the external forces. Let P be the pressure at infinity and p the
pressure disturbance caused by the source. The velocity of the main flow expressed in
dimensional coordinates is M/k. The velocity disturbances in the x-direction are given by
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0%¥/0x. Then we get

27 1 05”
- P, + P Mk +—|dydt
1=0 Jy=~1 0x

s oY oY
- PoM/k + py——+ pM/k + p——)dt.
. 0x 0x

=0 Jy=-1

E,

Dueto the periodic time dependence of ¥ and p, the contribution of the second and third termin
the integrand vanishes after integration over t. The first term does not depend on ¢ and x and
givestheenergy flow of the undisturbed medium, Weshall not consider this term. The pressure p
can be found from the equation of motion. In a coordinate system x,, y, t,, moving with the
main flow we have grad p = pdq/dt, where pis the density and g the velocity vector. Up to first
order accuracy we have dg/dt = 0q/0t. Then we find from the x, -component of the equation of
motion that p = p(0¥/0t,). The connection between the fixed and the moving coordinate
system is

x =X, + Mk 't, t=t,.
This gives
0¥ M 0¥
P= ”(7 3 E)
and hence

. J f o ov M (asv)z »
1= ol Ve ax Tk \ax )

For thecalculation of E, we have toknow the acousticalenergy E, thatis, the sum of the internal
and kinetical energy per unit of volume. An expression for E can befound in [ 3], formula (4.63),
page 183. Expressed in our dimensionless quantities, this becomes

g La(2¥ 2 (aqf’ 2+ aqf’2+<a¥' 2
=2 " \&, ) T\, 3y oz ) |

As the velocity of the undisturbed flow is M /k, we obtain

I N I aw>2+<aw>2+<aw>2}d B
270k Jio )iy ot |k ox ox ay ) [

For the calculation of the energy flow one has to take the real part of the velocity potential
because the energy is not a linear expression. Further one has much profit of the series
expansion (1) because the functions cos nzy are orthogonal, and consequently all cross
~products vanish after integration over y. This means that there is no energy flow due to
interaction of the waves.
The results of the calculations are asfollows: for all waves with exponential decay as |x| — oo,
that is, for waves with n > N, one obtains

E,=E, +E,=0.

Journal of Engineering Math., Vol. 11 (1977) 161-166



Propagation of sound waves in wave guides 165

This could be expected because otherwise one cannot see how the process can have only a
periodic time dependence. This is a check for the correctness of the formulae. ForO0 < n £ N
and x > 0 one obtains

_pnlkM — /K — BrPrd)k — M /k* — fn’n?)
1= = 4k,84(k2 - 'an2n2) ’

prM(k — M. /k? — B*n*n?)?
2= 4kﬁ4(k2 _ 'anznz) ’
pr(k — M\/k2 — B*n*n?)
4k,82\/k2 — BPnln? ’
The factor k — M./k* — f*n*z® is always positive for M <1. The factor

kM — \/ k* — B*n*n? is positive for k/n < n < k/(Bn). Hence the energy flow for the incoming
waves is negative but E is positive for all waves. For n = 0 and x > 0 one obtains

Er=E +E,=

_ pr(l = M) E pnM(1 — M)? _ pn(l = M)

E = — =
! gkpt T2 gkpt 0 T 8kp?

All these quantities are positive because here we have always to do with an outgoing wave.
For0 < n < N and x < 0 the results are

_ prlkM + Jk* — Ba?r?)(k + M/k? — Bn*n?)
1= = 4k,B4(k2 _ 'anznz) ’

B preM(k + M\/kz __'an2n2)2
- 4kﬂ4(k2 _ '82n2n2) ’

e - prik + M /k* — B2n*n?)
T 4kﬂ2\/k2 — BPntn?

andforn =0and x < 0,

pr(l + M)? E prM(1 + M)? pr(l + M)

E,=——2 1 "7 Ep=—
! 1 gkt T 8kp?

Hence for x < 0 we have E; < 0, which is in agreement with the fact that there exist only
outgoing waves for x < 0. The energy flow E, is again positive but E is always negative. The
conclusion is that we have upstream and downstream for all waves an energy transport in a
direction away from the source.

Theformulae for the problem with a circular cylindrical tube can be derived in the same way.
The expressions for the energy flow in this case can be found by replacing everywhere in the
formulae of the first problem n by A,/z and multiplying the righthand sides by 2/J3(4,). The
expressionsforn = Ofollowin thiscase from the generalformulae. Of course the conclusionsfor
the energy flow are the same as above. This means that it is not possible to gain energy from
infinity.

Journal of Engineering Math., Vol. 11 (1977) 161-166



166 P.le Grand

Note: Details of the calculations can befound in[4]. In[4] itisalso shown that when an integer
nexists with k = nzf, resp. k = 4,0, then a steady state solution does not exist, but the velocity

potential increases proportionally with \/ t for t — oo.
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